Shear strength testing of adhesive bonds in laminated elements made from palm trees
Abstract
With the constant increase in world population, the need for further infrastructure development has become more important than ever. To accommodate such growth, vast structures are built which utilize concrete and steel, thus leading to the increase of green-house gasses emission. The world therefore, has attempted to find an alternative construction material. One possible alternative is timber which has already demonstrated its capacity in the various structures built around the world. However, there are regions without trees. In the Middle East only palm trees are abundant. This research focuses on studying the bonding shear strength of laminated palm leaf elements. The adhesives used in this research were Polyurethane (PUR), Diallyl Phthalate (DAP) and Diallyl Phthalate (DAP cement) and were subjected to three different clamping pressures; 0.6MPa, 0.8MPa, and 1.0MPa to obtain the optimum bonding parameters. This research revealed that DAP adhesive produced the highest shear strength values of all the three adhesives as the clamping pressure increased, however, PUR adhesive shear strength values demonstrated the highest consistency. DAP cement adhesive showed the least consistency.
The Author (on behalf of any and all co-authors) hereby assigns to MTCJ (hereafter known as the Publisher) the copyright to the Contribution named above; whereby the Publisher shall have the exclusive international rights to publish in any and all media the said Contribution and translations of it wholly or in part throughout the World under the provisions of this agreement. These rights include without limitation mechanical, electronic and visual reproduction; electronic storage and retrieval; and all other forms of electronic publication or any other types of publication including all subsidiary rights.